Toxicity of Pristine and Chemically Functionalized Fullerenes to White Rot Fungus Phanerochaete chrysosporium

نویسندگان

  • Zhu Ming
  • Shicheng Feng
  • Ailimire Yilihamu
  • Qiang Ma
  • Shengnan Yang
  • Sheng-Tao Yang
چکیده

Fullerenes are widely produced and applied carbon nanomaterials that require a thorough investigation into their environmental hazards and risks. In this study, we compared the toxicity of pristine fullerene (C60) and carboxylated fullerene (C60-COOH) to white rot fungus Phanerochaete chrysosporium. The influence of fullerene on the weight increase, fibrous structure, ultrastructure, enzyme activity, and decomposition capability of P. chrysosporium was investigated to reflect the potential toxicity of fullerene. C60 did not change the fresh and dry weights of P. chrysosporium but C60-COOH inhibited the weight gain at high concentrations. Both C60 and C60-COOH destroyed the fibrous structure of the mycelia. The ultrastructure of P. chrysosporium was changed by C60-COOH. Pristine C60 did not affect the enzyme activity of the P. chrysosporium culture system while C60-COOH completely blocked the enzyme activity. Consequently, in the liquid culture, P. chrysosporium lost the decomposition activity at high C60-COOH concentrations. The decreased capability in degrading wood was observed for P. chrysosporium exposed to C60-COOH. Our results collectively indicate that chemical functionalization enhanced the toxicity of fullerene to white rot fungi and induced the loss of decomposition activity. The environmental risks of fullerene and its disturbance to the carbon cycle are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological Removal of Dibenzothiophene from Soil and Changes to soil Sulfate by White-Rot Fungus Phanerochaete chrysosporium

This study investigated biodegradation of dibenzothiophene (DBT) in marsh soil spiked bywhite-rot fungus Phanerochaete chrysosporium. Soil samples were spiked with 100 ppm DBTand incubated at 30°C in a dark chamber for 30 days. Samples were evaluated for pH, Mnperoxidaseactivity, sulfate ion concentration and growth during the tests. Results showedmaximum levels of pH, Mn-peroxidase and sulfate...

متن کامل

Identification of the gene encoding the major cellobiohydrolase of the white rot fungus Phanerochaete chrysosporium.

Previous studies have shown that the cellobiohydrolases of the white rot basidiomycete Phanerochaete chrysosporium are encoded by a family of structurally related genes. In this investigation, we identified and sequenced the most highly transcribed gene, cbh1-4. Evidence suggests that in this fungus the dominant isozyme, CBH1, is encoded by chb1-4.

متن کامل

Biotransformation of the Herbicide Atrazine by the White Rot Fungus Phanerochaete chrysosporium.

Biotransformation of atrazine by the white rot fungus Phanerochaete chrysosporium was demonstrated by a 48% decrease of the initial herbicide concentration in the growth medium within the first 4 days of incubation, which corresponded to the mycelium-growing phase. Results clearly established the mineralization of the ethyl group of the herbicide. Analysis of the growth medium showed the format...

متن کامل

Decolorization of Molasses Waste Water from an Alcoholic Fermentation Process with Phanerochaete Chrysosporium Involvement of Ligninase

Waste water from a molasses alcoholic fermentation plant (MWW) was treated biologically with Phanerochaete chrysosporium. The ability of this white-rot fungus to degrade the dark colored pigments present in MWW and the consequent decrease the effluent's color was examined. The Optimum concentration of MWW for color removal was determined and set at the ratio of 1:10. The color changes durin...

متن کامل

Biodegradation of polycyclic aromatic hydrocarbons by white rot fungi Phanerochaete chrysosporium in sterile and unsterile soil

Ligninolytic white rot fungus, Phanerochaete chrysosporium, isolated from soil sample of petroleum refinery, was used for degradation of five polycyclic aromatic hydrocarbons (PAHs: acenaphthene, anthracene, phenanthrene, fluoranthene and pyrene), simultaneously and individually in sterile and unsterile soil. For maximum biodegradation, after 42 days of incubation, optimum conditions were pH 7....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018